If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+11u-20=0
a = 3; b = 11; c = -20;
Δ = b2-4ac
Δ = 112-4·3·(-20)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*3}=\frac{-30}{6} =-5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*3}=\frac{8}{6} =1+1/3 $
| 12.25=3.5^x | | 7−3x=−x+1 | | s*6+42=126 | | 2y=3(y+15) | | -12x+12=13x+12 | | 2.2=-33+1.1y | | -6x+7(1-x)=-4(x+4) | | H(t)=200-16t^2 | | 36.94=7g+3.38 | | 2x+30+12x=26+14x+2 | | 9=-3=n+2n | | -3(3z-5)=-9z+15 | | 5.7=1.9x+1.9 | | 4(y−2)=12 | | 2x+30+12x=26+2 | | 3x+2-7=33 | | 4x-7=2(2x-4) | | 9625=5^x7x11 | | 20=1/2h(2+3)= | | -28-2n=2(2n-5) | | 10-x=3x+6x | | 7(59.5–r)+3r=173.5 | | 5(x-1)-2x=2 | | -10=2x+4=16 | | -3n=27=-6(3-7n) | | 6b+6=6-2b | | x(2x)=50 | | 20+x^2+4x=0 | | Xx2X=50 | | 4.9=5.5-0.3x | | -3n+27=6(3-7n0 | | -6+3n=-4n+6n |